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Full-Wave Analysis of Guided Wave
Structures lJsing a Novel 2-D FDTD ‘

S. Xiao, R. Vahldieck, and H. Jin

Abstract— A two-dimensional Yee’s mesh with reduced grid
size is proposed for the full-wave analysis of arbitrarily shaped
guided wave structures. By introducing a phase shift ~Ah along
the z-direction (propagation direction), it is now possible to
calculate the propagation constant of hybrid modes by using only
a two-dimensional mesh. This step not only allows the frequency
selective application of the finite difference time-domain (FDTD)
method, as desired in many design problems, but it also reduces
the memory space and CPU time of the fntl-wave FDTD signifi-
cantly. Furthermore, by introducing a phase shift, the size of the
space grid in propagation direction is reduced to half its nornwd
size.

I. INTRODUCTION

w

HEN Yee [1] introduced the FDTD, he discretized
Maxwell’s equations directly by the central difference

formula in time and space. Since then, the FDTD has been
further developed and is now well established as a versatile
technique to solve electromagnetic field problems. The method
is in particular attractive for transmission line problems with

complicated circuit contours. Application examples have been

reported in i.e., [2]-[9]. Although the method has many

attractive features for time-domain problems, one commonly

known disadvantage of the FDTD if utilized in frequency

selective analysis problems is, that it requires large amounts of
memory space and CPU time, in particular for the full-wave
analysis of hybrid modes in quasiplanar circuits or in generaI
in inhomogeneous waveguide structures.

The large memory space and CPU time requirements are
mainly due to the fact that the full-wave analysis requires
a three-dimensional mesh and that processing a time-domain
impulse involves from the start much more frequency informa-
tion than what is actually needed for the circuit analysis. Only

after the impulse has reached stability in the three-dimensional

mesh, a Fourier transfotm selects the information of interest.
To improve the computation time and memory space re-

quirements of the FDTD, it is crucial to reduce its mesh
size and preselect the frequency range of interest to avoid
processing of unnecessary information. However, up to now
a reduced mesh size (two-dimensional) could only be used
to calculate the TM or TE mode case separately [1], [7],
[8]. Although several other slightly different approaches for
the FDTD have been reported, all of them require a three-

dimensional mesh to determine hybrid modes. For example,
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one of those methods uses a Gaussian pulse as excitation for
a single shielded microstrip line. Typically 160 space meshes

are required in propagation direction and about 5 to 7’ time
steps for any one mesh to satisfy the stability condition [5],

[9]. Another approach is to resonate a section of the guided
structure by placing two short-circuited planes along the z-
axis a distance L apart. The length L corresponds to lhalf a
guided wavelength of the mode of interest. The resonance
frequency of the cavity corresponds to the frequency at which
this particular propagation constant is valid. The relationship

between the propagation constant and L is then /3= 2K/L. By
changing L also /? changes. Repeating the calculation for the
resonance frequency of the resonator for each ~, the dispersion
charactet%tic of the guided structure can be obtained [3]. .
Because also this method involves a three-dimensional ]mesh,
there are easily thousands of iteration steps involved.

To alleviate these problems, this letter introduces a novel
approach for the FDllD that uses only a two-dimensional mesh
consisting of a three-dimensional space grid for the analysis’
of hybrid modes. This two-dimensiond mesh could also be

regarded as one slice out of a three-dimensional mesh, with the

third dimension, the propagation direction, being replaced by”

introducing a phase shift @Ah. This step even allows to reduce
the size of the space grid to only half of its normal size. At a
first glance, the introduction of a phase shift in the time-domain
algorithm seems to be an odd approach. However, by choosing
the propagation constant first and then exciting the system ‘
with a time-domain impulse provides correct results (after a
Fourier transform) at the frequency at which this propagation
constant is valid. This frequency corresponds to the first peak
in the Fourier spectrum. Higher order modes correspond to the
other peaks in the spectrum. This step must then be repeated

for different propagation constants to obtain the dispersion

curve for one particular mode. Since this approach reqpires

only a two-dimensional mesh with a half-size space grid and
since the propagation constant is given as an input parameter,
the convergence” rate is much faster than in the conventional
approach and the memory space is reduced significantly

II. THE TWO-DIMESIONALMESH

The new approach follows the two-step leapfrog FDTD
procedure initially developed for a full-sized three-dimensional
grid. When the field components are normalized by the free
space impedance Z. = ~p~ :

(1)

105 1–8207/92$03.00 @ 1992 IEEE



166

one obtains (2) (see bottom of page) where s = c~t/~h,

and At and Ah are, respectively, the time and space step.
Here the stability condition requires

s < 1/%/% (3)

When the modes have been established a period of time after
the excitation, only a phase shift @Ah is involved at any

adjacent nodes for any specific propagation constant ~. This
modal knowledge is now used to simplify the scheme. It is
easy to see that any incident or reflected field impulse for any
propagation constant ~ satisfies [11]

e~(i, j, k + 1) = e~(i, j, k) exp {+.j/?Ah}

h;(i, j,k + 1) = l$(z,j, k)exp{+jDAh}, p=z, y,

(4)

then (2) can be rewritten as (5) (see bottom of page) .From
these equations it is obvious that now only a two-dimensional
mesh is involved. Since this process closes the z-direction (Fig.
1), only a reduced space grid of half size remains. Moreover,
no absorbing wall or shorted-shielding is needed along the
propagation direction. The condition of stability is now found

to be

s~ti. (6)

The grid size in z-direction is arbitrary as long as the trans-
mission line is homogeneous in this direction,

III. NUMERICAL RESULT

Calculations and comparisons have been made to verify the
new approach. First, the air- and dielectric-filled rectangular
waveguide is analyzed because of the availability of analytical
results, The dominant mode is chosen as excitation. For the
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Fig. 1. Novel 2–D FDTD mesh.

Fourier transform, the Blackman window function has been
selected because of its very smooth shape. The CPU-time for
this kind of problem was a few seconds on a Sun Spare station.
More complex structures can be handled easily. Fig. 2 shows
the dispersion curves for two coupled dielectric guides and a
comparison with the TLM [11] and mode matching method
(MMM) [12]. While all three methods are in close agreement,

the CPU-time for the MMM to calculate one frequency point
is in the order of hours (on a Sun Spare station) and that of

the condensed node TLM, as modified in [11], is about 1 to 2

minutes. The new FDTD approach consumed only around 10

seconds of the CPU-time because only a half mesh is involved
here.

IV. CONCLUSION

A 2-D FDTD mesh for the full-wave analysis of inhomo-
geneous transmission lines has been introduced. Using only
a half-size space grid the memory space and CPU-time of
the FDTD has been reduced significantly. Introducing a phase

h~+o 5(i, j, k) = hz‘-o”’(i,,~, k) - s{e~(i,j, k) - e~(z,j + l,k) - e~(i,j, k + 1) + e~(i,j, k)}

hn+o 5(i, j,k) = 1$-o 5(i, j,k) – s{e~(i, j,k + 1) – e~(i, j,k) – e~(i + I,j, k) + e~(i, j,k)}

h:+05(~,j, ~) = h=‘-o’(i,j,k) - s{e~(z+ I,j, k) - e~(i,j, k) - e~(z,j+ I,/c) +e~(i,j, k)}

:S+’(~,j, k) = e~(~,j, k) + S{h;+o”’(i, j, k) - h~+05 (i,j -1, k) - h;+05(z,j,k) + h;+o’(i,j,k - 1)}

e~+’(i, j,k) = e~(i, j,k) + s{h~+o’(i,j,k) - hx‘+05( i,j,k -1) - h~+o 5(i,j, k) + h~+o 5(z - l,j, k)}

e~+l(i,j, k) = e~(i,j, k) + s{h~+o’(i,j,k) - h~+o’(t - l,j, k) - h~+o ‘(i,j, k) + h$+o ‘(i)j - l,k)}, (2)

hn+05(i j) = hn–05(i,j) – s{e~(z, j + 1) – e~(i, j) + 2sin (flAh/2)e~(T-PAti) /2e~(i, j)}

h;+o 5(i’j) = h~–05(i,j) – s{e~(i, j) – e~(i + l,j) – 2sin (flAh/2)e~(w-fiAh j/2e~(z, j)}

h~+o”’(i~.j) = h~-05(i,j) – s{e~(i + l,j) – e~(z,j) – eg(~,j + 1) + e;(~,~)}

e~+’(i, j) = e~(i,j) + s{h~+o’(i,j) - h~+o 5(ijj – 1) – 2sin (~ Ah/2) e-’(m-~AkJf2h~t05 (i,j)}

‘+0 5(i, j) + 2 sin (@Ah/2) e-~(m-6A~Ji2h~+05 (i, j)}ej+’(i, j) = e~(i, j) + s{h~+05(i - l,j) - hz

e~+l(i,j) = e~(t,j) + .s{h~+o’(i,j) - h~+05(z - l,j) - h~+o’(i,j) + h~+o’(i,j - l)}. (5)
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Fig. 2. Numerical comparison between 2-D F’DTD, mode-matching method,
and transmission-line-matrix method.

shift in axial direction and chosing the propagation constant
as input parameter, allows a frequency selective application
of the FDTD. This makes the FDTD a very efficient tool for
practical CAD of various complicated microwave circuits.
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